MiS Preprint Repository

Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.

MiS Preprint

Closed Legendre geodesics in Sasaki manifolds

Knut Smoczyk


If $L\subset M$ is a Legendre submanifold in a Sasaki manifold, then the mean curvature flow does not preserve the Legendre condition. We define a kind of mean curvature flow for Legendre submanifolds which slightly differs from the standard one and then we prove that closed Legendre curves $L$ in a Sasaki space form $M$ converge to closed Legendre geodesics, if, $k^2+\sigma+3\le 0$ and $\text{rot}(L)=0$, where $\sigma$ denotes the sectional curvature of the contact plane $\xi$ and $k$, $\text{rot}(L)$ are the curvature respectively the rotation number of $L$. If $\text{rot}(L)\neq 0$, we obtain convergence of a subsequence to Legendre curves with constant curvature. In case $\sigma+3\le 0$ and if the Legendre angle $\alpha$ of the initial curve satisfies $\text{osc}\,(\alpha) \le \pi$, then we also prove convergence to a closed Legendre geodesic.

Sep 5, 2002
Sep 5, 2002
MSC Codes:
53C44, 53C42
legendre, curve shortening, geodesic, sasaki

Related publications

2003 Journal Open Access
Knut Smoczyk

Closed Legendre geodesics in Sasaki manifolds

In: New York journal of mathematics, 9 (2003), 23-47 (electronic)