Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
92/2002
Mean Curvature Flows of Lagrangian Submanifolds with Convex Potentials
Knut Smoczyk and Mu-Tao Wang
Abstract
This article studies the mean curvature flow of Lagrangian submanifolds. In particular, we prove the following global existence and convergence theorem: if the potential function of a Lagrangian graph in $T^{2n}$ is convex, then the flow exists for all time and converges smoothly to a flat Lagrangian submanifold. We also discuss various conditions on the potential function that guarantee global existence and convergence.