We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
We argue that the coordination of the activities of individual complex agents enables a system to develop and sustain complexity at a higher level. We exemplify relevant mechanisms through computer simulations of a toy system, a coupled map lattice with transmission delays. The coordination here is achieved through the synchronization of the chaotic operations of the individual elements, and on the basis of this, regular behavior at a longer temporal scale emerges that is inaccessible to the uncoupled individual dynamics.