Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
106/2003
A nonlocal singular perturbation problem with periodic well potential
Matthias Kurzke
Abstract
For a one-dimensional nonlocal nonconvex singular perturbation problem with a noncoercive periodic well potential, we prove a $\Gamma$-convergence theorem and show compactness up to translation in all $L^p$ and certain Orlicz spaces for sequences of bounded energy. This generalizes work of Alberti, Bouchitté and Seppecher for the coercive two-well case. The theorem has applications to a certain thin-film limit of the micromagnetic energy.