Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
1/2004
Traveling wave speeds of nonlocally perturbed reaction diffusion equations
Fathi Dkhil and Angela Stevens
Abstract
In this paper we consider a nonlocal integro-differential model as discussed by Bates et al. It is known that unique, stable traveling waves exist for the classical reaction-diffusion model as well as for the nonlocal model and for combinations of both for certain bistable nonlinearities. Here we are concerned with the traveling wave speed and how small perturbations with a nonlocal term affect the speed of the original reaction-diffusion problem. This is done by showing that an expansion for the wave speed of the perturbed problem exists and calculating the sign of the first order coefficient.