We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
In recent work, the second author and various collaborators have shown using Evans function/refined semigroup techniques that, under very general circumstances, the problems of determining one- or multi-dimensional nonlinear stability of a smooth shock profile may be reduced to that of determining spectral stability of the corresponding linearized operator about the wave. It is expected that this condition should in general be analytically verifiable in the case of small amplitude profiles, but this has so far been shown only on a case-by-case basis using clever (and difficult to generalize) energy estimates. Here, we describe how the same set of Evans function tools that were used to accomplish the original reduction can be used to show also small-amplitude spectral stability by a direct and readily generalizable procedure. This approach both recovers the results obtained by energy methods, and yields new results not previously obtainable. In particular, we establish one-dimensional stability of small amplitude relaxation profiles, completing the Evans function program set out in Mascia and Zumbrun. Multidimensional stability of small amplitude viscous profiles will be addressed in a companion paper \cite{PZ}, completing the program of Zumbrun.