We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
MiS Preprint
11/2005
Eigenfrequencies of fractal drums
Lehel Banjai
Abstract
A method for the computation of eigenfrequencies and eigenmodes of fractal drums is presented. The approach involves first mapping the unit disk to a polygon approximating the fractal and then solving a weighted eigenvalue problem on the unit disk by a spectral collocation method. The numerical computation of the complicated conformal mapping was made feasible by the use of the fast multipole method as described in [1]. The linear system arising from the spectral discretization is large and dense. To circumvent this problem we devise a fast method for the inversion of such a system. Consequently the eigenvalue problem is solved iteratively. We obtain 8 digits for the first eigenvalue of the Koch snowflake and at least 5 digits for eigenvalues up to the 20th. Numerical results for two more fractals are shown.
[1] L. Banjai and L. N. Trefethen. A multipole method for Schwarz-Christoffel mapping of polygons with thousands of sides. SIAM J. Sci. Comput., 25(3):1042-1065, 2003.