MiS Preprint Repository

Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.

MiS Preprint

Sparse Convolution Quadrature for Time Domain Boundary Integral Formulations of the Wave Equation

Wolfgang Hackbusch, Wendy Kress and Stefan A. Sauter


Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem we employ the convolution quadrature method for the discretization in time and the Galerkin boundary element method for the space discretization.

We will introduce a simple a-priori cutoff strategy where small entries of the system matrix are replaced by zero. The threshold for the cutoff is determined by an a-priori analysis which will be developed in this paper.

This method reduces the storage requirements from O(M² N log² N) to O(M1+s N log² N) for some s between 0 and 1 where N denotes the number of time steps and M is the dimension of the boundary element space.

Dec 9, 2005
Dec 9, 2005
MSC Codes:
35L05, 74S15, 65N38
boundary integral equations, wave equation, convolution quadrature, time domain, stability

Related publications

2009 Repository Open Access
Wolfgang Hackbusch, Wendy Kress and Stefan A. Sauter

Sparse convolution quadrature for time domain boundary integral formulations of the wave equation

In: IMA journal of numerical analysis, 29 (2009) 1, pp. 158-179