We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
The Martin boundary of a Cartan-Hadamard manifold describes a fine geometric structure at infinity, which is a sub-space of positive harmonic functions. We describe conditions which ensure that some points of the sphere at infinity belong to the Martin boundary as well. In the case of the universal cover of a compact manifold with Ballmann rank one, we show that Martin points are generic and of full harmonic measure. The result of this paper provides a partial answer to an open problem of S. T. Yau.