Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
59/2005
Low-Rank wavelet solver for the Ornstein-Zernike integral equation
Maxim V. Fedorov, Heinz-Jürgen Flad, Lars Grasedyck and Boris N. Khoromskij
Abstract
A structured wavelet algorithm is developed to solve the Ornstein-Zernike integral equation for simple liquids. The algorithm is based on the discrete wavelet transform of radial distribution functions and different low-rank matrix approximations. The fundamental properties of wavelet bases such as interpolation properties and orthogonality are employed to improve the convergence and speed of the algorithm. In order to solve the integral equation we have applied a combined scheme in which the coarse part of the solution is calculated by the use of wavelets in a multilevel method, while the fine part is solved by the direct iteration. Tests have indicated that the proposed procedure is more effective than the conventional method based on hybrid algorithms.