Search

MiS Preprint Repository

Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.

MiS Preprint
89/2005

Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces

Christian Klein, Alexey Kokotov and Dmitry Korotkin

Abstract

We study extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of compact genus two Riemann surfaces. By a combination of analytical and numerical methods we indetify four non-degenerate critical points of this function and compute the signature of the Hessian at these points. The curve with the maximal number of automorphisms (the Burnside curve) turns out to be the point of the absolute maximum. Our results agree with the mass formula for virtual Euler characteristics of the moduli space. A similar analysis is performed for three of Bolza's strata of symmetric Riemann surfaces of genus two.

Received:
Oct 11, 2005
Published:
Oct 11, 2005

Related publications

inJournal
2009 Journal Open Access
Alexey Kokotov, Christian Klein and Dmitry Korotkin

Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces

In: Mathematische Zeitschrift, 261 (2009) 1, pp. 73-108