We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
MiS Preprint
116/2006
The spectral geometry of the canonical Riemannian submersion of a compact Lie Group
Corey Dunn, Peter B. Gilkey and JeongHyeong Park
Abstract
Let G be a compact connected Lie group which is equipped with a bi-invariant Riemannian metric. Let m(x,y)=xy be the multiplication operator. We show the associated fibration m from GxG to G is a Riemannian submersion with totally geodesic fibers and we study the spectral geometry of this submersion. We show that the pull back of an eigenform on the base has finite Fourier series on the total space and we give examples where arbitrarily many Fourier coefficients can be non zero. We give necessary and sufficient conditions that the pull back of a form on the base is harmonic on the total space.