MiS Preprint Repository

Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.

MiS Preprint

Accelerating Galerkin BEM for Linear Elasticity using Adaptive Cross Approximation

Mario Bebendorf and Richard Grzibovski


The adaptive cross approximation (ACA) algorithm provides a means to compute data-sparse approximants of discrete integral formulations of elliptic boundary value problems with almost linear complexity. ACA uses only few of the original entries for the approximation of the whole matrix and is therefore well-suited to speed up existing computer codes. In this article we extend the convergence proof of ACA to Galerkin discretizations. Additionally, we prove that ACA can be applied to integral formulations of systems of second-order elliptic operators without adaptation to the respective problem. The results of applying ACA to boundary integral formulations of linear elasticity are reported. Furthermore, we comment on recent implementation issues of ACA for nonsmooth boundaries.

May 2, 2006
May 2, 2006
MSC Codes:
65D05, 65D15, 65F05

Related publications

2006 Repository Open Access
Mario Bebendorf and R. Grzhibovskis

Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation

In: Mathematical methods in the applied sciences, 29 (2006) 14, pp. 1721-1747