We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
MiS Preprint
5/2006
Stability of Calderón inverse Conductivity Problem in the plane
Tomeu Barceló, Daniel Faraco and Alberto Ruiz
Abstract
It is proved that, in two dimensions, Calderón inverse conductivity problem is stable when the conductivities are Hölder continuous with any exponent α > 0. The approach is based on reducing the conductivity equation to a complex Beltrami equation as in Astala-Päivärinta proof of the uniqueness in Calderón problem for L∞conductivities.