MiS Preprint Repository

We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.

MiS Preprint
102/2007

The uniform Korn-Poincaré inequality in thin domains

Marta Lewicka and Stefan Müller

Abstract

We study the Korn-Poincaré inequality: uW1,2(Sh)ChD(u)L2(Sh), in domains Sh that are shells of small thickness of order h, around an arbitrary smooth and closed hypersurface S in Rn. By D(u) we denote the symmetric part of the gradient u, and we assume the tangential boundary conditions: unh=0 on Sh. We prove that Ch remains uniformly bounded as h0, for vector fields u in any family of cones (with angle <π/2, uniform in h) around the orthogonal complement of extensions of Killing vector fields on S.

We show that this condition is optimal, as in turn every Killing field admits a family of extensions uh, for which the ratio uhW1,2(Sh)/D(uh)L2(Sh) blows up as h0, even if the domains Sh are not rotationally symmetric.

Received:
19.11.07
Published:
19.11.07

Related publications

inJournal
2011 Repository Open Access
Marta Lewicka and Stefan Müller

The uniform Korn-Poincaré inequality in thin domains

In: Annales de l'Institut Henri Poincaré / C, 28 (2011) 3, pp. 443-469