Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
16/2007
On the gradient set of Lipschitz maps
Bernd Kirchheim and László Székelyhidi
Abstract
We prove that the essential range of the gradient of planar Lipschitz maps has a connected rank-one convex hull. As a corollary, in combination with the results in Faraco, D., and Székelyhidi, Jr., L.: Tartar's conjecture and localization of the quasiconvex hull in {$\mathbb{R}^{2\times 2}$}. Preprint, MPI-MIS, 2006. we obtain a complete characterization of incompatible sets of gradients for planar maps in terms of rank-one convexity.