We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
The long-time asymptotics is analyzed for finite energy solutions of the 1D Schrödinger equation coupled to a nonlinear oscillator. The coupled system is invariant with respect to the phase rotation group
[1] V.S. Buslaev, G.S. Perelman, On nonlinear scattering of states which are close to a soliton, pp. 49-63 in: Méthodes Semi-Classiques, Vol.2 Colloque International (Nantes, juin 1991), Asterisque 208 (1992).
[2] V.S. Buslaev, G.S. Perelman, Scattering for the nonlinear Schrödinger equation: states close to a soliton, St. Petersburg Math. J. 4 (1993), 1111-1142.