Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
99/2007
Floating bodies in neutral equilibrium
Robert Finn and Mattie Sloss
Abstract
In the paper just preceding in this issue, Finn proved that if the contact angle γ of a convex body B with a given liquid is π/2, and if B can be made to float in “neutral equilibrium” in the liquid in any orientation, then B is a metric ball. The present work extends that result, with an independent proof, to any contact angle in the range 0 < γ < π. Our result is equivalent to the general geometric theorem that if for every orientation of a plane, it can be translated to meet a given strictly convex body B in a fixed angle γ within the above range, then B is a metric ball.