We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
This paper evolves a new non-perturbative theory by which the problem of infinities appearing in quantum physics can be handled. Its most important application is an exact derivation of the Lamb shift formula by using no renormalization. The Lamb shift experiment (1947) gave rise to one of the greatest challenges whose explanation brought the modern renormalization technique into life. Since then this is the only tool for handling these infinities. The relation between this renormalization theory and our non-perturbative theory is also discussed in this paper.
Our key insight is the realization that the natural complex Heisenberg group representation splits the Hilbert space,
This paper explicitly explores also the ignored (infinitely many) other zones. It turns out that quantities appearing as infinities on the total Hilbert space are finite in the zonal setting. Even the zonal Feynman integrals are well defined. In a sense, the desired finite quantities are provided here by an extended particle theory where these extended objects show up also on the rigorously developed mathematical level. Name de Broglie geometry was chosen to suggest this feature of the zonal theory.