We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
In this paper, we describe and analyse a novel tensor approximation method for discretized multi-dimensional functions and operators in
The approach stands on successive reiterations of the orthogonal Tucker tensor approximation on a sequence of nested refined grids. On the one hand, it provides a good initial guess for the nonlinear iterations to find the approximating subspaces on finer grids, on the other hand, it allows to transfer from the coarse-to-fine grids the important data structure information on location of the so-called most important fibers in directional unfolding matrices. The method indicates linear complexity with respect to the size of data representing the input tensor. In particular, if the target tensor is given by using the rank-
The method is tested by 3D electronic structure calculations. For the multigrid accelerated low Tucker-rank approximation of the all electron densities having strong nuclear cusps, we obtain high resolution of their 3D convolution product with the Newton potential. The accuracy of order