MiS Preprint Repository

Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.

MiS Preprint

A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction. Part I: Formulation, Analysis, and Computations

David Bourne and Stuart S. Antman


This two-part paper treats the numerical approximation of a tricky quadratic eigenvalue problem arising from the following generalization of the classical Taylor-Couette problem: A viscous incompressible fluid occupies the region between a rigid inner cylinder and a deformable outer cylinder, which we take to be a nonlinearly viscoelastic membrane. The inner cylinder rotates at a prescribed angular velocity $\omega$, driving the fluid, which in turn drives the deformable outer cylinder. The motion of the outer cylinder is not prescribed, but responds to the forces exerted on it by the moving fluid. A steady solution of this coupled fluid-solid system, analogous to the Couette solution of the classical problem, can be found analytically. Its linearized stability is governed by a non-self-adjoint quadratic eigenvalue problem.

In Part I, we give a careful formulation of the geometrically exact problem. We compute the eigenvalue trajectories in the complex plane as functions of $\omega$ by using a Fourier-finite element method. Computational results show that steady solution loses its stability by a process suggestive of a Takens-Bogdanov bifurcation. In Part II we prove convergence of the numerical method.

Sep 3, 2008
Sep 3, 2008
MSC Codes:
65N25, 74F10, 76D05, 74D10
Non-self-adjoint quadratic eigenvalue problem, fluid-solid interaction, viscous fluid, nonlinear viscoeastic shell

Related publications

2009 Repository Open Access
David Bourne and Stuart S. Antman

A non-self-adjoint quadratic eigenvalue problem describing a fluid-solid interaction. Pt. 1 : Formulation, analysis, and computations

In: Communications on pure and applied analysis, 8 (2009) 1, pp. 123-142