We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
We study the dynamics of the structure of a formal neural network wherein the strengths of the synapses are governed by spike-timing-dependent plasticity (STDP). For properly chosen input signals, there exists a steady state with a residual network. We compare the motif profile of such a network with that of a real neural network of \emph{C. elegans} and identify robust qualitative similarities. In particular, our extensive numerical simulations show that this STDP-driven resulting network is robust under variations of the model parameters.