Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
27/2010
An error analysis of Runge-Kutta convolution quadrature
Lehel Banjai and Christian Lubich
Abstract
An error analysis is given for convolution quadratures based on strongly A-stable Runge-Kutta methods, for the non-sectorial case of a convolution kernel with a Laplace transform that is polynomially bounded in a half-plane. The order of approximation depends on the classical order and stage order of the Runge-Kutta method and on the growth exponent of the Laplace transform. Numerical experiments with convolution quadratures based on the Radau IIA methods are given on an example of a time-domain boundary integral operator.