We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
We investigate the convergence rate of approximations by finite sums of rank-
Our approach could be regarded as either a class of compressed approximations of these solution or as a new class of iterative elliptic problem solvers for high dimensional, parametric, elliptic PDEs providing linear scaling complexity in the dimension
It is based on rank-reduced, tensor-formatted separable approximations of the high-dimensional tensors and matrices involved in the iterative process, combined with the use of spectrally equivalent low-rank tensor-structured preconditioners to the parametric matrices resulting from a Finite Element discretization of the high-dimensional parametric, deterministic problems.
Numerical illustrations for the