Search

MiS Preprint Repository

Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.

MiS Preprint
18/2011

Superfast Fourier transform using QTT approximation

Sergey Dolgov, Boris N. Khoromskij and Dmitry Savostyanov

Abstract

We propose Fourier transform algorithms using QTT format for data-sparse approximate representation of one-- and multi-dimensional vectors ($m$--tensors). Although the Fourier matrix itself does not have a low-rank QTT representation, it can be efficiently applied to a vector in the QTT format exploiting the multilevel structure of the Cooley-Tukey algorithm. The $m$--dimensional Fourier transform of an $n \times \ldots \times n$ vector with $n=2^d$ has $\mathcal{O}(m d^2 R^3)$ complexity, where $R$ is the maximum QTT--rank of input, output and all intermediate vectors in the procedure. For the vectors with moderate $R$ and large $n$ and $m$ the proposed algorithm outperforms the $\mathcal{O}(n^m \log n)$ fast Fourier transform (FFT) algorithm and has asymptotically the same log-squared complexity as the superfast quantum Fourier transform (QFT) algorithm.

By numerical experiments we demonstrate the examples of problems for which the use of QTT format relaxes the grid size constrains and allows the high-resolution computations of Fourier images and convolutions in higher dimensions without the "curse of dimensionality". We compare the proposed method with Sparse Fourier transform algorithms and show that our approach is competitive for signals with small number of randomly distributed frequencies and signals with limited bandwidth.

Received:
Apr 26, 2011
Published:
Apr 28, 2011
MSC Codes:
15A23, 15A69, 65F99, 65T50
Keywords:
Multidimensional arrays, QTT, FFT, sine/cosine transform, convolution, sparse Fourier transform, high-dimensional problems, tensor train format, Fourier transform, quantum Fourier transform

Related publications

inJournal
2012 Repository Open Access
Sergey Dolgov, Boris N. Khoromskij and Dmitry V. Savostyanov

Superfast Fourier transform using QTT approximation

In: The journal of Fourier analysis and applications, 18 (2012) 5, pp. 915-953