MiS Preprint Repository

We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV ( that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.

MiS Preprint

Saddle-shaped solutions of bistable elliptic equations involving the half-Laplacian

Eleonora Cinti


We establish existence and qualitative properties of saddle-shaped solutions of the elliptic fractional equation $(-\Delta)^{1/2}u=f(u)$ in all the space $\mathbb{R}^{2m}$, where $f$ is of bistable type. These solutions are odd with respect to the Simons cone and even with respect to each coordinate.

More precisely, we prove the existence of a saddle-shaped solution in every even dimension $2m$, as well as its monotonicity properties, asymptotic behaviour, and instability in dimensions $2m=4$ and $2m=6$.

These results are relevant in connection with the analog for fractional equations of a conjecture of De Giorgi on the 1-D symmetry of certain solutions. Saddle-shaped solutions are the simplest candidates, besides 1-D solutions, to be global minimizers in high dimensions, a property not yet established.

MSC Codes:
35J61, 35J20, 35B40
half-Laplacian, saddle-shaped solutions, stability properties

Related publications

2013 Repository Open Access
Eleonora Cinti

Saddle-shaped solutions of bistable elliptic equations involving the half-Laplacian

In: Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 12 (2013) 3, pp. 623-665