Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
73/2011
Optimally approximating exponential families
Johannes Rauh
Abstract
This article studies exponential families $\mathcal{E}$ on finite sets such that the information divergence $D(P\|\mathcal{E})$ of an arbitrary probability distribution from $\mathcal{E}$ is bounded by some constant $D>0$. A particular class of low-dimensional exponential families that have low values of $D$ can be obtained from partitions of the state space. The main results concern optimality properties of these partition exponential families. Exponential families where $D=\log(2)$ are studied in detail. This case is special, because if $D<\log(2)$, then $\mathcal{E}$ contains all probability measures with full support.