Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
75/2011
Information topologies on non-commutative state spaces
Stephan Weis
Abstract
We define an information topology (I-topology) and a reverse information topology (rI-topology) on the state space of a C*-subalgebra of Mat(n,C) in terms of sequential convergence with respect to the relative entropy. Open disks with respect to the relative entropy define a base for the topology. This was not evident since Csiszár has shown in the 1960's that the analogue is wrong for probability measures on a countably infinite set. The I-topology is strictly finer than the norm topology, it disconnects the convex state space into its faces. The rI-topology is intermediate and it allows to complete two fundamental theorems of information geometry to the full state space, by taking the closure in the rI-topology. The norm topology can be too coarse for this aim but for commutative algebras it equals the rI-topology, so the difference belongs to the domain of quantum theory. We apply our results to the maximization of the von Neumann entropy under linear constraints and to the maximization of quantum correlations.