We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
The proximal point algorithm, which is a well-known tool for finding minima of convex functions, is generalized from the classical Hilbert space framework into a nonlinear setting, namely, geodesic metric spaces of non-positive curvature. We prove that the sequence generated by the proximal point algorithm weakly converges to a minimizer, and also discuss a related question: convergence of the gradient flow.