We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
We prove that if a curve parametrized by arc length is a stationary point of the Moebius energy introduced by Jun O'Hara, then it is smooth whenever the Moebius energy is finite. Our methods, interestingly, only rely on purely analytical arguments, entirely without using Moebius invariance. Furthermore, the techniques involved are not fundamentally restricted to one-dimensional domains, but are generalizable to arbitrary dimensions.