We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
MiS Preprint
59/2012
Partial evaluation of the discrete solution of elliptic boundary value problems
Wolfgang Hackbusch and Florian Drechsler
Abstract
The technique of hierarchical matrices is used to construct a solution operator for a discrete elliptic boundary value problem. The solution operator can be determined once for all from a recursive domain decomposition structure. Then, given boundary values and a source term, the solution can be evaluated by applying the solution operator. The complete procedure yields all components of the solution vector. The data size and computational cost is $O(n\log^{\ast}n),$ where $n$ is the number of unknowns.
Once the data of the solution operator are constructed, components related to small subdomains can be truncated. This reduces the storage amount and still enables a partial evaluation of the solution (restricted to the skeletons of the remaining subdomains). The latter approach is in particular suited for problems with oscillatory coefficients, where one is not interested in all details of the solution.