We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
We study the effective large-scale behavior of discrete elliptic equations on the lattice
This is done via the corrector problem, which can be viewed as a highly degenerate elliptic equation on the infinite-dimensional space of admissible coefficient fields. In this contribution we develop quantitative methods for the corrector problem assuming that the ensemble of coefficient fields satisfies a spectral gap estimate w. r. t. a Glauber dynamics. As a main result we prove an optimal estimate for the decay in time of the parabolic equation associated to the corrector problem (i. e. for the "random environment as seen from a random walker"). As a corollary we obtain existence and moment bounds for stationary correctors (in dimension
As an application, we study the approximation of the homogenized coefficients via a representative volume element. The approximation introduces two types of errors. Based on our quantitative methods, we develop an error analysis that gives optimal bounds in terms of scaling in the size of the representative volume element - even for large ellipticity ratios.