Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
38/2013
Hopf bifurcation in the evolution of STDP-driven networks
Quansheng Ren, Kiran M. Kolwankar, Areejit Samal and Jürgen Jost
Abstract
We study the interplay of topology and dynamics in a neural network connected with spike-timing-dependent plasticity (STDP) synapses. Stimulated with periodic spike trains, the STDP-driven network undergoes a synaptic pruning process and evolves to a residual network. We examine the variation of topological and dynamical properties of the residual network by varying two key parameters of STDP: Synaptic delay and the ratio between potentiation and depression. Our extensive numerical simulations of the Leaky Integrate-and-Fire model show that there exists two regions in the parameter space. The first corresponds to fixed point configurations, where the distribution of peak synaptic conductances and the firing rate of neurons remain constant over time. The second corresponds to oscillating configurations, where both topological and dynamical properties vary periodically which is a result of a fixed point becoming a limit cycle via a Hopf bifurcation. This leads to interesting questions regarding the implications of these rhythms in the topology and dynamics of the network for learning and cognitive processing.