We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
In this paper we investigate the cubic-to-orthorhombic phase transition in the framework of linear elasticity. Using convex integration techniques, we prove that this phase transition represents one of the simplest three-dimensional examples in which already the linearized theory of elasticity displays non-rigidity properties. As a complementary result, we demonstrate that surface energy constraints rule out such highly oscillatory behaviour. We give a full characterization of all possibly emerging patterns for generic values off δ.