We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
We consider a variational model for the formation of islands in heteroepitaxial growth on unbounded domains. We first derive the scaling regimes of the minimal energy in terms of the volume of the film and the amplitude of the crystallographic misfit. For small volumes, non-existence of minimizers is then proven. This corresponds to the experimentally observed wetting effect. On the other hand, we show the existence of minimizers for large volumes. We finally study the asymptotic behavior of the optimal shapes.