Search

MiS Preprint Repository

Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.

MiS Preprint
69/2014

Statistical physics methods provide the exact solution to a long-standing problem of genetics

Areejit Samal and Olivier Martin

Abstract

Analytic and computational methods developed within statistical physics have found applications in numerous disciplines. In this letter, we use such methods to solve a long-standing problem in statistical genetics. The problem, posed by Haldane and Waddington [J.B.S. Haldane and C.H. Waddington, Genetics 16, 357-374 (1931)], concerns so-called recombinant inbred lines (RILs) produced by repeated inbreeding. Haldane and Waddington derived the probabilities of RILs when considering 2 and 3 genes but the case of 4 or more genes has remained elusive. Our solution uses two probabilistic frameworks relatively unknown outside of physics: Glauber's formula and self-consistent equations of the Schwinger-Dyson type. Surprisingly, this combination of statistical formalisms unveils the exact probabilities of RILs for any number of genes. Extensions of the framework may have applications in population genetics and beyond.

Received:
Jul 24, 2014
Published:
Aug 11, 2014
PACS:
02.50.Cw, 05.40.-a, 02.50.Sk

Related publications

inJournal
2014 Repository Open Access
Areejit Samal and Olivier Martin

Statistical physics methods provide the exact solution to a long-standing problem of genetics

In: Physical review letters, 114 (2014) 23, p. 238101