We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
We introduce the Tucker tensor method for the grid-based assembled summation of long-range interaction potentials over large 3D lattices in a box. This method is a generalization of our previous approach on the low-rank canonical tensor summation of electrostatic potentials on a rectangular 3D lattice. In the new technique we first approximate (with a guaranteed precision) the single kernel function represented on large
Then each 3D singular kernel function involved in the summation is approximated on the same grid by the shift of the reference Tucker tensor. Directional vectors of the Tucker tensor representing a full lattice sum are assembled by the 1D summation of the corresponding Tucker vectors for shifted potentials, while the core tensor remains unchanged. The Tucker ranks of the resultant tensor sum on the 3D rectangular
With the slight modifications our approach applies in the presence of defects, such as vacancies, impurities and non-rectangular geometries of a set of active lattice points, as well as for the case of hexagonal lattices. For potential sums with defects the Tucker rank of the resultant tensor may increase, so that we apply the
Numerical tests confirm the efficiency of the presented tensor summation method. In particular, we show that a sum of millions of Newton kernels on a 3D lattice with defects/impurities can be computed in about a minute in Matlab implementation. The approach is beneficial for functional calculus with the lattice potential sum represented on large 3D grids in the Tucker/canonical formats. Indeed, the interpolation, scalar product with a function, integration or differentiation can be performed easily in tensor arithmetics with 1D complexity.