MiS Preprint Repository

Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.

MiS Preprint

The homological nature of entropy

Pierre Baudot and Daniel Bennequin


We propose that entropy is a universal co-homological class in a theory associated to a family of observable quantities and a family of probability distributions. Three cases are presented:

  1. classical probabilities and random variables;
  2. quantum probabilities and observable operators;
  3. dynamic probabilities and observation trees.

This gives rise to a new kind of topology for information processes, that accounts for the main information functions: entropy, mutual-informations at all orders, and Kullback-Leibler divergence and generalises them in several ways.

The article is divided into two parts, that can be read independently. In the first part, the introduction, we provide an overview of the results, some open questions, future results and lines of research, and discuss briefly the application to complex data. In the second part we give the complete definitions and proofs of the theorems 1, 3 and 5 in the introduction, which show why entropy is the first homological invariant of a structure of information in four contexts: static classical or quantum probability, dynamics of classical or quantum strategies of observation of a finite system.

Feb 12, 2015
Mar 30, 2015
MSC Codes:
20J06, 94A17, 81P45, 18D50, 62F15, 14F35
Shannon information, Homology Theory, entropy, Quantum Information, Homotopy of Links, Mutual Informations, Kullback-Leiber divergence, Trees

Related publications

2015 Journal Open Access
Pierre Baudot and Daniel Bennequin

The homological nature of entropy

In: Entropy, 17 (2015) 5, pp. 3253-3318