We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
MiS Preprint
10/2015
The homological nature of entropy
Pierre Baudot and Daniel Bennequin
Abstract
We propose that entropy is a universal co-homological class in a theory associated to a family of observable quantities and a family of probability distributions. Three cases are presented:
classical probabilities and random variables;
quantum probabilities and observable operators;
dynamic probabilities and observation trees.
This gives rise to a new kind of topology for information processes, that accounts for the main information functions: entropy, mutual-informations at all orders, and Kullback-Leibler divergence and generalises them in several ways.
The article is divided into two parts, that can be read independently. In the first part, the introduction, we provide an overview of the results, some open questions, future results and lines of research, and discuss briefly the application to complex data. In the second part we give the complete definitions and proofs of the theorems 1, 3 and 5 in the introduction, which show why entropy is the first homological invariant of a structure of information in four contexts: static classical or quantum probability, dynamics of classical or quantum strategies of observation of a finite system.