We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
MiS Preprint
34/2015
Residually many BV homeomorphisms map a null set in a set of full measure
Andrea Marchese
Abstract
Let $Q=[0,1]^2$ be the unit square in $\mathbb{R}^2$. We prove that in a suitable complete metric space of $BV$ homeomorphisms $f:Q\rightarrow Q$ with $f_{|\partial Q}=Id$, the generical homeomorphism (in the sense of Baire categories) maps a null set in a set of full measure and vice versa. Moreover we observe that, for $1\leq p<2$, in the most reasonable complete metric space for such problem, the family of $W^{1,p}$ homemomorphisms satisfying the above property is of first category, instead.