Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
34/2015
Residually many BV homeomorphisms map a null set in a set of full measure
Andrea Marchese
Abstract
Let $Q=[0,1]^2$ be the unit square in $\mathbb{R}^2$. We prove that in a suitable complete metric space of $BV$ homeomorphisms $f:Q\rightarrow Q$ with $f_{|\partial Q}=Id$, the generical homeomorphism (in the sense of Baire categories) maps a null set in a set of full measure and vice versa. Moreover we observe that, for $1\leq p<2$, in the most reasonable complete metric space for such problem, the family of $W^{1,p}$ homemomorphisms satisfying the above property is of first category, instead.