MiS Preprint Repository

Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.

MiS Preprint

Spectrahedral Containment and Operator Systems with finite-dimensional Realization

Tobias Fritz, Tim Netzer and Andreas Thom


Containment problems for polytopes and spectrahedra appear in various applications, such as linear and semidefinite programming, combinatorics, convexity and stability analysis of differential equations. This paper explores the theoretical background of a method proposed by Ben-Tal and Nemirovksi [bental]. Their method provides a strengthening of the containment problem, that is algorithmically well tractable.

To analyze this method, we study abstract operator systems, and investigate when they have a finite-dimensional concrete realization.

Our results give some profound insight into their approach. They imply that when testing the inclusion of a fixed polyhedral cone in an arbitrary spectrahedron, the strengthening is tight if and only if the polyhedral cone is a simplex. This is true independent of the representation of the polytope. We also deduce error bounds in the other cases, simplifying and extending recent results by various authors.

Sep 27, 2016
Oct 11, 2016

Related publications

2017 Journal Open Access
Tobias Fritz, Tim Netzer and Andreas Berthold Thom

Spectrahedral containment and operator systems with finite-dimensional realization

In: SIAM journal on applied algebra and geometry, 1 (2017) 1, pp. 556-574