MiS Preprint Repository

We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV ( that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.

MiS Preprint

Coarse Geometry of Evolving Networks

Melanie Weber, Emil Saucan and Jürgen Jost


Traditionally, network analysis is based on local properties of vertices, like their degree or clustering, and their statistical behavior across the network in question. This paper develops an approach which is different in two respects. We investigate edge-based properties, and we define global characteristics of networks directly. More concretely, we start with Forman’s notion of the Ricci curvature of a graph, or more generally, a polyhedral complex. This will allow us to pass from a graph as representing a network to a polyhedral complex for instance by filling in triangles into connected triples of edges and to investigate the resulting effect on the curvature. This is insightful for two reasons: First, we can define a curvature flow in order to asymptotically simplify a network and reduce it to its essentials. Second, using a construction of Bloch, which yields a discrete Gauss-Bonnet theorem, we have the Euler characteristic of a network as a global characteristic. These two aspects beautifully merge in the sense that the asymptotic properties of the curvature flow are indicated by that Euler characteristic.

MSC Codes:
53C44, 05C82

Related publications

2018 Repository Open Access
Melanie Weber, Emil Saucan and Jürgen Jost

Coarse geometry of evolving networks

In: Journal of complex networks, 6 (2018) 5, pp. 706-732