We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
Secret sharing is a cryptographic discipline in which the goal is to distribute information about a secret over a set of participants in such a way that only specific authorized combinations of participants together can reconstruct the secret. Thus, secret sharing schemes are systems of variables in which it is very clearly specified which subsets have information about the secret. As such, they provide perfect model systems for information decompositions. However, following this intuition too far leads to an information decomposition with negative partial information terms, which are difficult to interpret. One possible explanation is that the partial information lattice proposed by Williams and Beer is incomplete and has to be extended to incorporate terms corresponding to higher order redundancy. These results put bounds on information decompositions that follow the partial information framework, and they hint at where the partial information lattice needs to be improved.