We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
In this paper, we introduce a new interpolation scheme to approximate the density of states (DOS) for a class of rank-structured matrices with application to the Tamm-Dancoff approximation (TDA) of the Bethe-Salpeter equation (BSE). The presented approach for approximating the DOS is based on two main techniques. First, we propose an economical method for calculating the traces of parametric matrix resolvents at interpolation points by taking advantage of the block-diagonal plus low-rank matrix structure described in [6,3] for the BSE/TDA problem. Second, we show that a regularized or smoothed DOS discretized on a fine grid of size