Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
33/2019
Probability, valuations, hyperspaces: Three monads on Top and the support as a morphism
We define a monad V of continuous subprobability valuations on the category Top of topological spaces and continuous maps, analogous to the extended probabilistic powerdomain. This monad can be restricted to a submonad of τ-smooth probability measures on Top. We also study the hyperspace monad H on Top, which assigns to every space its space of closed subsets equipped with the lower Vietoris topology. We show that the operation of taking the support of a valuation induces a morphism of monads from V to H. To do so, we use duality results for valuations and for closed subsets that are naturally compatible. As far as we know, this work is the first to provide a morphism from a probabilistic to a possibilistic powerspace. We show that the V-algebras are topological convex spaces, and that every H-algebra (i.e. every topological semilattice) is canonically a V-algebra too.