We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
In this paper, we investigate a sharp Moser-Trudinger inequality which involves the anisotropic Sobolev norm in unbounded domains. Under this anisotropic Sobolev norm, we establish the Lions type concentration-compactness alternative firstly. Then by using a blow-up procedure, we obtain the existence of extremal functions for this sharp geometric inequality. In particular, we combine the low dimension case of