We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
Recently the rank-structured tensor approach suggested a progress in the numerical treatment of the long-range electrostatic potentials in many-particle systems and the respective interaction energy and forces [39,40,2]. In this paper, we outline the prospects for tensor-based numerical modeling of the collective electrostatic potential on lattices and in many-particle systems of general type. We generalize the approach initially introduced for the rank-structured grid-based calculation of the collective potentials on 3D lattices [39] to the case of many particle systems with variable charges placed on