Search

MiS Preprint Repository

Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.

MiS Preprint
19/2022

Selfadhesivity in Gaussian conditional independence structures

Tobias Boege

Abstract

Selfadhesivity is a property of entropic polymatroids which can be formulated as gluability conditions of the polymatroid to an identical copy of itself along arbitrary restrictions and such that the two pieces are independent given the common restriction.

We show that positive definite matrices satisfy this condition as well and examine consequences for Gaussian conditional independence structures. New axioms of Gaussian CI are obtained by applying selfadhesivity to the previously known axioms of structural semigraphoids and orientable gaussoids.

Received:
May 17, 2022
Published:
May 17, 2022
MSC Codes:
62R01, 62B10, 15A29, 05B20
Keywords:
selfadhesivity, adhesive extension, positive definite matrix, Conditional Independence, structural semigraphoid, orientable gaussoid

Related publications

inJournal
2023 Journal Open Access
Tobias Boege

Selfadhesivity in Gaussian conditional independence structures

In: International journal of approximate reasoning, (2023)