MiS Preprint Repository

Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.

MiS Preprint

Factorization for Generalized Biadjoint Scalar Amplitudes via Matroid Subdivisions

Nick Early


We study the problem of factorization for residues of generalized biadjoint scalar scattering amplitudes $m^{(k)}_n$, introduced by Cachazo, Early, Guevara and Mizera (CEGM), involving multi-dimensional residues which factorize generically into $k$-ary products of lower-point generalized biadjoint amplitudes of the same type $m^{(k)}_{n_1}\cdots m^{(k)}_{n_k}$, where $n_1+\cdots +n_k = n+k(k-1)$, noting that smaller numbers of factors arise as special cases. Such behavior is governed geometrically by regular matroid subdivisions of hypersimplices and cones in the positive tropical Grassmannian, and combinatorially by collections of compatible decorated ordered set partitions, considered modulo cyclic rotation. We make a proposal for conditions under which this happens and we develop $k=3,4$ in detail. We conclude briefly to propose a novel formula to construct coarsest regular matroid subdivisions of all hypersimplices $\Delta_{k,n}$ and rays of the positive tropical Grassmannian, which should be of independent interest.

Dec 3, 2022
Dec 3, 2022

Related publications

2022 Repository Open Access
Nick Early

Factorization for generalized biadjoint scalar amplitudes via matroid subdivisions