We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
MiS Preprint
35/2024
Tighter constraints of multi-qubit entanglement in terms of nonconvex entanglement measures LCREN and LCRENoA
Zhong-Xi Shen, Dong-Ping Xuan, Wen Zhou, Zhi-Xi Wang and Shao-Ming Fei
Abstract
The monogamy property of entanglement is an intriguing feature of multipartite quantum entanglement. Most entanglement measures satisfying the monogamy inequality are turned out to be convex. Whether nonconvex entanglement measures obeys the monogamy inequalities remains less known at present. As a well known measure of entanglement, the logarithmic negativity is not convex. We elucidate the constraints of multi-qubit entanglement based on the logarithmic convex-roof extended negativity (LCREN) and the logarithmic convex-roof extended negativity of assistance (LCRENoA). Using the Hamming weight derived from the binary vector associated with the distribution of subsystems, we establish monogamy inequalities for multi-qubit entanglement in terms of the $\alpha$th-power ($\alpha\geq 4\ln2$) of LCREN, and polygamy inequalities utilizing the $\alpha$th-power ($0 \leq \alpha \leq 2$) of LCRENoA. We demonstrate that these inequalities give rise to tighter constraints than the existing ones. Furthermore, our monogamy inequalities are shown to remain valid for the high dimensional states that violate the CKW monogamy inequality. Detailed examples are presented to illustrate the effectiveness of our results in characterizing the multipartite entanglement distributions.