

Preprint 39/2007
The Allen-Cahn action functional in higher dimensions
Luca Mugnai and Matthias Röger
Contact the author: Please use for correspondence this email.
Submission date: 16. Apr. 2007 (revised version: July 2007)
Pages: 35
published in: Interfaces and free boundaries, 10 (2008) 1, p. 45-78
DOI number (of the published article): 10.4171/IFB/179
Bibtex
MSC-Numbers: 49J45, 35R60, 60F10, 53C44
Keywords and phrases: Allen-Cahn equation, large deviation theory, sharp interface limits
Download full preprint: PDF (440 kB)
Abstract:
The Allen-Cahn action functional is related to the probability of rare
events in the stochastically perturbed Allen-Cahn equation. Formal
calculations suggest a reduced action functional in the sharp
interface limit. We prove in two and three space dimensions the
corresponding lower bound. One difficulty is that diffuse interfaces may
collapse in the limit. We therefore consider the limit of diffuse
surface area measures and introduce a generalized velocity and
generalized reduced action functional in a class of evolving
measures. As a corollary we obtain the Gamma convergence of the action
functional in a class of regularly evolving hypersurfaces.